On the factorability of $T_{C_{p^n}}$ -ideals of C_{p^n} -graded upper block triangular matrix algebras

Viviane Ribeiro Tomaz da Silva (vivianerts@gmail.com) Universidade Federal de Minas Gerais

Abstract. Let *F* be a field of characteristic zero. In 2003, Giambruno and Zaicev proved that the *T*-ideal of any upper block triangular matrix algebra $UT(d_1, \ldots, d_m)$ satisfies the factoring property, that is, $Id(UT(d_1, \ldots, d_m)) = Id(M_{d_1}(F)) \cdots Id(M_{d_m}(F))$.

If F is an algebraically closed field and $G := C_k$ is a cyclic group of order k, consider a G-graded upper block triangular matrix algebra $UT_G(A_1, \ldots, A_m)$ equipped with an elementary G-grading, where A_1, \ldots, A_m are finite dimensional G-simple F-algebras. In 2019, in a joint work with Avelar and Di Vincenzo, we have stated that the T_{C_2} -ideal of $UT_{C_2}(A_1, \ldots, A_m)$ is factorable if, and only if, there exists at most one index $i \in [1, m]$ such that A_i is a non- C_2 -regular simple superalgebra, if and only if, $UT_{C_2}(A_1, \ldots, A_m)$ has only one class of C_2 -graded isomorphism.

Recently, in a joint work with Di Vincenzo and Pinto, we have stated a generalization of such results for the T_G -ideals of the upper block triangular matrix algebras $UT_G(A_1, \ldots, A_m)$, in case G is a finite cyclic p-group with p being a prime number.

* Partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) - grant 306534/2016-9 and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) - grant APQ-01149-18.